欧美福利在线播放_免费在线观看羞羞视频_加勒比色老久久爱综合网_性一交一乱一区二区洋洋av_国产麻豆麻豆_国产精品一线天粉嫩av_国产精品天美传媒入口_午夜a一级毛片亚洲欧洲_精品久久久久久久大神国产_四虎影视在线播放

課程目錄: 會計(jì)學(xué)數(shù)據(jù)分析基礎(chǔ) II培訓(xùn)

4401 人關(guān)注
(78637/99817)
課程大綱:

會計(jì)學(xué)數(shù)據(jù)分析基礎(chǔ) II培訓(xùn)

 

 

Course Orientation

You will become familiar with the course, your classmates,

and our learning environment. The orientation will also help you obtain the technical skills required for the course.

Module 1: Introduction to Machine Learning

This module provides the basis for the rest of the course by introducing the basic concepts behind machine learning,

and, specifically, how to perform machine learning by using Python and the scikit learn machine learning module.

First, you will learn how machine learning and artificial intelligence are disrupting businesses.

Next, you will learn about the basic types of machine learning and how to leverage these algorithms in a Python script.

Third, you will learn how linear regression can be considered a machine learning problem with parameters that must be determined

computationally by minimizing a cost function. Finally, you will learn about neighbor-based algorithms,

including the k-nearest neighbor algorithm, which can be used for both classification and regression tasks.

 

Module 2: Fundamental Algorithms

This module introduces several of the most important machine learning algorithms: logistic regression, decision trees,

and support vector machine. Of these three algorithms, the first, logistic regression,

is a classification algorithm (despite its name). The other two,

however, can be used for either classification or regression tasks. Thus,

this module will dive deeper into the concept of machine classification,

where algorithms learn from existing, labeled data to classify new,

unseen data into specific categories; and, the concept of machine regression,

where algorithms learn a model from data to make predictions for new,

unseen data. While these algorithms all differ in their mathematical underpinnings,

they are often used for classifying numerical, text, and image data or performing regression in a variety of domains.

This module will also review different techniques for

quantifying the performance of a classification and regression algorithms and how to deal with imbalanced training data.

 

Module 3: Practical Concepts in Machine Learning

 

This module introduces several important and practical concepts in machine learning.

First, you will learn about the challenges inherent in applying data analytics (and machine learning in particular) to real world data sets.

This also introduces several methodologies that you may encounter in the future that dictate how to approach,

tackle, and deploy data analytic solutions.

Next, you will learn about a powerful technique to combine the predictions

from many weak learners to make a better prediction via a process known as ensemble learning.

Specifically, this module will introduce two of the most popular ensemble learning

techniques: bagging and boosting and demonstrate how to employ them in a Python data

analytics script. Finally, the concept of a machine learning pipeline is introduced,

which encapsulates the process of creating, deploying, and reusing machine learning models.

Module 4: Overfitting & Regularization

 

This module introduces the concept of regularization, problems it can cause in machine learning analyses,

and techniques to overcome it. First, the basic concept of overfitting is presented along with ways to identify its occurrence. Next,

the technique of cross-validation is introduced,

which can mitigate the likelihood that overfitting can occur. Next, the use of cross-validation to identify the optimal parameters for a machine

learning algorithm trained on a given data set is presented. Finally, the concept of regularization,

where an additional penalty term is applied when determining the best machine learning model parameters,

is introduced and demonstrated for different regression and classification algorithms.

Module 5: Fundamental Probabilistic Algorithms

This module starts by discussing practical machine learning workflows that are deployed in production environments,

which emphasizes the big picture view of machine learning.

Next this module introduces two additional fundamental algorithms: naive Bayes and Gaussian

Processes. These algorithms both have foundations in probability theory but operate under very different

assumptions. Naive Bayes is generally used for classification tasks, while Gaussian Processes are generally used for regression tasks.

This module also discusses practical issues in constructing machine learning workflows.

 

Module 6: Feature Engineering

 

This module introduces an important concept in machine learning,

the selection of the actual features that will be used by a machine learning

algorithm. Along with data cleaning, this step in the data analytics process is extremely important,

yet it is often overlooked as a method for improving the overall performance of an analysis.

This module beings with a discussion of ethics in machine learning,

in large part because the selection of features can have (sometimes) non-obvious impacts on the final performance of an algorithm.

This can be important when machine learning is applied to data in a regulated industry or when the improper application of an algorithm

might lead to discrimination. The rest of this module introduces different techniques for either selecting the best features in a data set,

 

Module 7: Introduction to Clustering

This module introduces clustering, where data points are assigned to larger groups of points based on some specific property,

such as spatial distance or the local density of points. While humans often find clusters visually with ease in given data sets, computationally the problem is more challenging.

This module starts by exploring the basic ideas behind

this unsupervised learning technique, as well as different areas in which clustering can be used by businesses. Next,

one of the most popular clustering techniques, K-means, is introduced. Next the density-based DB-SCAN technique is introduced. This module

concludes by introducing the mixture models technique for probabilistically assigning points to clusters.

or the construction of new features from the existing set of features.

Module 8: Introduction to Anomaly Detection

This module introduces the concept of an anomaly, or outlier,

and different techniques for identifying these unusual data points. First,

the general concept of an anomaly is discussed and demonstrated in the business community via the detection of fraud,

which in general should be an anomaly when compared to normal customers or operations.

Next, statistical techniques for identifying outliers are introduced, which often involve simple

descriptive statistics that can highlight data that are sufficiently far from the norm for a given data set. Finally,

machine learning techniques are reviewed that can either classify outliers or identify

points in low density (or outside normal clusters) areas as potential outliers.

 

国产精品一区二区不卡| 日韩a**中文字幕| 午夜日韩激情| 精品电影在线观看| 国产精品第100页| 婷婷中文字幕在线观看| 亚洲免费一级片| 老司机精品福利视频| 717成人午夜免费福利电影| 成人免费在线一区二区三区| 亚洲黄色小说视频| 91精品啪在线观看国产爱臀| 久久久久久日产精品| 裸体女人亚洲精品一区| 欧美网站免费观看| 国产人妖一区二区三区| 久久久久久9| 精品少妇一区二区三区视频免付费 | 国产精品国产自产拍高清av王其| 欧美黑人性视频| 天天插天天操天天射| 国产刺激高潮av| 精彩视频一区二区| 亚洲日本中文字幕| 国产一线二线三线女| 亚洲自拍偷拍另类| 欧美一级视频| 精品国产a毛片| 在线视频不卡一区二区三区| 成人毛片在线播放| 黄色av日韩| 在线不卡免费欧美| 欧美二区三区| 伊人国产在线观看| 欧美欧美全黄| 制服丝袜国产精品| 色女孩综合网| 亚洲GV成人无码久久精品| 亚洲私人影院| 日韩女优电影在线观看| 一区二区三区四区视频在线观看| 欧美成人一区二区三区四区| 一本久久知道综合久久| 日韩欧美成人一区| 国产精品久久成人免费观看| 中文字幕第31页| 视频一区视频二区中文| 亚洲精品色婷婷福利天堂| www.日本在线播放| 亚洲精品久久久久久久久久 | 26uuu另类欧美| 欧美激情网友自拍| 免费欧美一级片| 欧美一区在线观看视频| 亚洲欧美成aⅴ人在线观看| 国产欧美日韩91| 国产无遮挡在线观看| 欧美日韩在线播放视频| 91成人看片片| 色狠狠久久av五月综合| 精人妻无码一区二区三区| 久久一区欧美| 国产亚洲精品美女久久久久| 亚洲中文字幕久久精品无码喷水| 亚洲天堂一区二区| 国产偷国产偷亚洲高清人白洁 | 爱情岛论坛亚洲入口| 私库av在线播放| 亚洲国内欧美| 亚洲精品国产精品乱码不99按摩| www.射射射| 无码国精品一区二区免费蜜桃| 久久网站热最新地址| 国产精品xxx视频| 特黄一区二区三区| 欧美三级小说| 日韩精品中文字| 日韩免费高清在线| www一区二区三区| 一区二区三区**美女毛片| 国产无套精品一区二区| 日本视频网站在线观看| 久久精品国产在热久久| 欧美丰满片xxx777| 黄色片视频免费观看| 国产探花一区二区| 91精品中文字幕一区二区三区| 欧美国产视频一区| 亚洲色大成网站www| 国产精品女同互慰在线看| 91久热免费在线视频| 国产在线拍揄自揄拍无码视频| 国产一区二区三区成人欧美日韩在线观看 | 激情偷拍久久| 亚洲天堂网站在线观看视频| 日本黄色的视频| 欧美大片网址| 欧美伦理视频网站| 国产在线精品91| 99re8精品视频在线观看| 亚洲不卡av一区二区三区| 欧美午夜精品久久久久久蜜| 国产精品久久久久久在线| av电影一区二区| 国产精品香蕉国产| 日韩欧美一区二区一幕| 久久精品国产秦先生| 久久久久久香蕉网| av在线播放中文字幕| 极品av少妇一区二区| 正在播放亚洲1区| 老司机av网站| 日韩电影二区| 日韩精品在线影院| 午夜诱惑痒痒网| 国内精品伊人久久久| 精品国内片67194| 亚洲国产成人va在线观看麻豆| 日本中文字幕在线一区| 欧美精品一卡二卡| 久久久久久香蕉| 欧美黄色录像| 日韩欧美激情一区| 国产精品v日韩精品v在线观看| 蜜桃成人av| 亚洲第一综合天堂另类专| 国产精品一区二区小说| 久久99视频| 亚洲国产精品人久久电影| 91香蕉视频免费看| 国产精品99一区二区三区| 亚洲欧美日韩精品久久亚洲区| 动漫美女无遮挡免费| 亚洲有吗中文字幕| 中文字幕亚洲综合| 黄色三级生活片| 日韩精品亚洲专区| 日韩男女性生活视频| 欧美三级韩国三级日本三斤在线观看| 国产高清在线观看免费不卡| 成人精品久久av网站| 中文字幕在线日亚洲9| 国产亚洲成av人在线观看导航| 精品一区在线播放| 搡老岳熟女国产熟妇| 亚洲一区二区在线观看视频| 欧美另类videosbestsex日本| crdy在线观看欧美| 4438x亚洲最大成人网| 国产色视频在线播放| 色呦哟—国产精品| 中文字幕精品久久久久| 国产免费无遮挡吸奶头视频| 日本最新不卡在线| 国产精品入口日韩视频大尺度| 久久久999久久久| 国产精品无码永久免费888| 日韩精品极品视频在线观看免费| 日韩毛片一区| 欧美日韩国产小视频在线观看| 麻豆三级在线观看| 一区二区在线影院| 欧美精品在线看| 精品久久免费视频| 2017欧美狠狠色| 日韩高清dvd| 日韩黄色三级| 日韩精品一区在线观看| 国产高清成人久久| 久久综合五月| 91精品免费视频| 亚洲国产综合网| 婷婷成人激情在线网| 免费国产a级片| 国产精品嫩草影院在线看| 一个色综合导航| 成年人二级毛片| 成+人+亚洲+综合天堂| 久久爱av电影| 美女视频一区| 欧美成人三级电影在线| av无码一区二区三区| 免费人成网站在线观看欧美高清| 91精品久久久久久久久久久久久| japanese国产| 欧美日韩国产专区| 搡女人真爽免费午夜网站| 中文无码久久精品| 69久久夜色精品国产69| 这里只有精品国产| 亚洲夂夂婷婷色拍ww47| 欧美综合在线观看视频| 女人色偷偷aa久久天堂| 欧美重口另类videos人妖| 国产又黄又粗又长| 色悠悠久久综合| 中文字幕55页| 日本亚洲一区二区| 粉嫩av四季av绯色av第一区| 日本在线视频一区二区| 精品日韩在线观看| 国产精成人品免费观看| 成人在线综合网| 一区二区三区四区欧美| 羞羞色国产精品网站| 久久在线精品视频| 亚洲精品中文字幕乱码三区91| 亚洲天堂成人在线观看| 欧美三级午夜理伦三级| 国产伊人精品| 国产综合久久久久| 吞精囗交69激情欧美| 精品美女在线播放| 久艹在线观看视频| 久久女同精品一区二区| 欧美亚洲色图视频| 亚洲视频电影在线| 国产精品高潮呻吟久久av野狼| 刘亦菲毛片一区二区三区| 欧美日韩的一区二区| 91国模少妇一区二区三区| www.欧美亚洲| 屁屁影院ccyy国产第一页| 国产精品国产三级国产在线观看| 欧洲永久精品大片ww免费漫画| 性一交一乱一伧老太| 制服.丝袜.亚洲.中文.综合| 少妇久久久久久久久久| 99热在这里有精品免费| 亚洲爆乳无码精品aaa片蜜桃| 97视频精品| 国产欧美日韩丝袜精品一区| 蜜桃视频成人m3u8| 国产丝袜一区二区三区| 97超碰人人干| 亚洲成人1区2区| 亚洲免费观看在线| 国产成人综合亚洲网站| 日本xxx免费| 91精品99| 亚洲xxxxx性| 只有精品亚洲| 久久九九热免费视频| 亚洲在线视频播放| 欧美另类高清zo欧美| 国产三级精品三级观看| 亚洲欧洲一区二区在线播放| 自拍偷拍21p| 久久爱www久久做| 亚洲乱码一区二区三区三上悠亚| 区一区二视频| 成人国产在线视频| 国产精一区二区| 欧美成人网在线| 亚洲黄色a级片| 亚洲成色777777在线观看影院| 亚洲精品午夜久久久久久久| 亚洲成人av一区| 国产真实乱人偷精品| 92国产精品观看| 久久久久狠狠高潮亚洲精品| 日韩精品一级中文字幕精品视频免费观看 | 国产精选久久久久久| 不卡一区视频| 欧美激情综合色综合啪啪五月| 欧美一区二区黄片| 亚洲视频欧洲视频| 一本大道伊人av久久综合| 日韩一区二区在线播放| 日韩女同强女同hd| 欧美亚洲尤物久久| 日本老熟俱乐部h0930| 午夜精品久久久久久久久 | 亚洲啪啪综合av一区二区三区| 成年人性生活视频| 26uuu久久综合| 日本免费色视频| 国产精品一区二区免费不卡| 热99这里只有精品| 男人的j进女人的j一区| 国产成人生活片| 噜噜噜在线观看免费视频日韩| 午夜精品亚洲一区二区三区嫩草 | 日韩欧美另类在线| 天天操夜夜操视频| 6080国产精品一区二区| 国产成人啪精品午夜在线观看| 在线一区二区三区四区五区| 9999热视频| 色一情一乱一乱一91av| 手机在线免费看毛片| 一本久久精品一区二区| 色欲一区二区三区精品a片| 天天色图综合网| 肉色超薄丝袜脚交69xx图片| 精品国产91久久久久久老师| 人妻互换一区二区激情偷拍| 亚洲高清中文字幕| 久久人妻无码aⅴ毛片a片app| 懂色av影视一区二区三区| 国精品人伦一区二区三区蜜桃| 精品日韩美女的视频高清| 三级av在线免费观看| 色噜噜狠狠一区二区三区果冻| 免费三片在线播放| 欧美三级电影网站| 五月天激情国产综合婷婷婷| 欧美电影精品一区二区| 亚洲一级在线播放| 亚洲男人天堂手机在线| 亚洲黄色在线免费观看| www日韩欧美| 希岛爱理一区二区三区av高清| 欧美黑人性猛交| **国产精品| 国产精品欧美一区二区三区奶水| 国产一区丝袜| 69堂成人精品视频免费| 色爱综合网欧美| 日本一区免费在线观看| 亚洲精品1234| av片在线免费| 国产精品77777| 在线视频观看91| 国产精品黄色在线观看| 日本黄色特级片| 福利一区福利二区微拍刺激| 精品在线视频观看| 欧美xxxxxxxxx| 精品国自产拍在线观看| 久久久国产在线视频| 日本成人在线网站| 国产精品免费观看在线| 国产在线日韩精品| 日本精品一区二区三区高清 久久| 国产欧美在线| 97超碰青青草| 91蜜桃网址入口| 一级性生活大片| 色天天综合色天天久久| 国产一级一级国产| 亚洲人成电影网站色xx| 一区一区三区| 国产极品精品在线观看| 国产午夜一区| 亚洲国产高清国产精品| 麻豆91精品视频| 激情黄色小视频| 亚洲精品五月天| 久久伊人成人网| 精品成人一区二区| 少妇高潮久久久| 日本sm极度另类视频| 国产亚洲欧美日韩在线观看一区二区 | 成人av综合一区| 最近中文字幕无免费| 富二代精品短视频| 波多野结衣视频在线观看| 视频在线一区二区| 精品国产亚洲一区二区三区| 亚洲在线观看视频| 一区福利视频| 日本a级片免费观看| 国产人妖乱国产精品人妖| 亚洲女同二女同志奶水| 日韩一级完整毛片| 熟妇人妻中文av无码| 国产精品成人国产乱一区 | 蜜桃久久精品一区二区| 五月天婷婷影视| 亚洲成人综合视频| 亚洲欧美一二三区| 久久九九亚洲综合| 乱亲女h秽乱长久久久| 欧美一级爽aaaaa大片| 狠狠色丁香久久婷婷综合丁香| 日本一区二区三区在线免费观看| 亚洲国产精品欧美一二99| 中文字幕xxxx| 欧美成人剧情片在线观看| 青青操综合网| 亚洲三区在线观看| 成人av网站在线观看| 免费在线观看a视频| 欧美tk—视频vk| 国产在线|日韩| 不卡视频一区二区| 男女性色大片免费观看一区二区 | 国产成人精品一区二区三区在线观看| 天天av天天翘天天综合网| 亚洲国产成人精品女人久久| 另类少妇人与禽zozz0性伦| 香蕉久久夜色精品国产更新时间| 亚洲欧美综合一区| 99精品久久久久久| www.99re7| 中文字幕一精品亚洲无线一区 | 成人免费在线视频网址| 99精品视频免费观看视频| 女同激情久久av久久|