欧美福利在线播放_免费在线观看羞羞视频_加勒比色老久久爱综合网_性一交一乱一区二区洋洋av_国产麻豆麻豆_国产精品一线天粉嫩av_国产精品天美传媒入口_午夜a一级毛片亚洲欧洲_精品久久久久久久大神国产_四虎影视在线播放

課程目錄: 大數(shù)據(jù)新興技術(shù)培訓(xùn)

4401 人關(guān)注
(78637/99817)
課程大綱:

大數(shù)據(jù)新興技術(shù)培訓(xùn)

 

 

 

Big Data Rankings & Products

The first module “Big Data Rankings & Products” focuses on the relation and market shares of big data hardware,

software, and professional services. This information provides an insight to how future industry,

products, services, schools, and government organizations will be influenced by big data technology.

To have a deeper view into the world’s top big data products line and service types,

the lecture provides an overview on the major big data company, which include IBM, SAP,

Oracle, HPE, Splunk, Dell, Teradata, Microsoft, Cisco, and AWS. In order to understand the power of big data technology,

the difference of big data analysis compared to traditional data analysis is explained.

This is followed by a lecture on the 4 V big challenges of big data technology,

which deal with issues in the volume, variety, velocity, and veracity of the massive data.

Based on this introduction information, big data technology used in adding global insights

on investments, help locate new stores and factories,

and run real-time recommendation systems by Wal-Mart, Amazon, and Citibank is introduced.

Big Data & Hadoop

The second module “Big Data & Hadoop” focuses on the characteristics and operations of Hadoop,

which is the original big data system that was used by Google.

The lectures explain the functionality of MapReduce,

HDFS (Hadoop Distributed FileSystem), and the processing of data blocks.

These functions are executed on a cluster of nodes that are assigned the role of NameNode or DataNodes,

where the data processing is conducted by the JobTracker and TaskTrackers,

which are explained in the lectures. In addition,

the characteristics of metadata types and the differences

in the data analysis processes of Hadoop and SQL (Structured Query Language) are explained.

Then the Hadoop Release Series is introduced which include the descriptions of Hadoop YARN (Yet Another Resource Negotiator),

HDFS Federation, and HDFS HA (High Availability) big data technology.

Spark

The third module “Spark” focuses on the operations and characteristics of Spark,

which is currently the most popular big data technology in the world.

The lecture first covers the differences in data analysis characteristics of Spark and Hadoop,

then goes into the features of Spark big data processing based on the RDD (Resilient Distributed Datasets),

Spark Core, Spark SQL, Spark Streaming, MLlib (Machine Learning Library), and GraphX core units.

Details of the features of Spark DAG (Directed Acyclic Graph) stages and pipeline processes

that are formed based on Spark transformations and actions are explained. Especially,

the definition and advantages of lazy transformations and DAG operations are described along with

the characteristics of Spark variables and serialization.

In addition, the process of Spark cluster operations based on Mesos, Standalone, and YARN are introduced.

Spark ML & Streaming

The fourth module “Spark ML & Streaming” focuses on how Spark ML (Machine Learning)

works and how Spark streaming operations are conducted.

The Spark ML algorithms include featurization, pipelines,

persistence, and utilities which operate on the RDDs (Resilient Distributed Datasets) to extract information form the massive datasets.

The lectures explain the characteristics of the DataFrame-based API,

which is the primary ML API in the spark.ml package.

Spark ML basic statistics algorithms based on correlation and hypothesis testing (P-value)

are first introduced followed by the Spark ML classification and regression algorithms based

on linear models, naive Bayes, and decision tree techniques. Then the characteristics of Spark streaming,

streaming input and output, as well as streaming receiver types (which include basic, custom,

and advanced) are explained, followed by how the Spark Streaming process

and DStream (Discretized Stream) enable big data streaming operations for real-time and near-real-time applications.

Storm

The fifth module “Storm” focuses on the characteristics and operations of Storm big data systems.

The lecture first covers the differences in data analysis characteristics of Storm,

Spark, and Hadoop technology. Then the features of Storm big data processing based on the nimbus,

spouts, and bolts are described followed by the Storm streams, supervisor, and ZooKeeper details.

Further details on Storm reliable and unreliable spouts and bolts are provided followed

by the advantages of Storm DAG (Directed Acyclic Graph) and data stream queue management.

In addition, the advantages of using Storm based fast real-time applications, which include real-time analytics,

online ML (Machine Learning), continuous computation,

DRPC (Distributed Remote Procedure Call), and ETL (Extract, Transform, Load) are introduced.

IBM SPSS Statistics Project

The sixth and last module “IBM SPSS Statistics Project” focuses on providing experience

on one of the most famous and widely used big data statistical analysis systems in the world. First,

the lecture starts with how to setup and use IBM SPSS Statistics, and continues

on to describe how IBM SPSS Statistics can be used to gain corporate data analysis experience.

Then the data processing statistical results of two projects based on using the IBM SPSS Statistics big data system is conducted.

The projects are conducted so the student can discover new ways to use,

analyze, and draw charts of the relationship between datasets,

and also compare the statistical results using IBM SPSS Statistics.


 

久久久欧美一区二区| 国产麻豆精品一区| 精品成人免费视频| 怡红院成人在线| 99久久99九九99九九九| 在线一区免费观看| 亚洲精品视频一区| 国产亚洲精品美女久久久| 国产欧美一区二区三区视频 | 蜜桃视频无码区在线观看| 男人天堂中文字幕| 日韩激情综合| 久久99精品一区二区三区| 亚洲va国产天堂va久久en| 色一区av在线| 日本不卡二区高清三区| 老鸭窝一区二区| 国精产品一品二品国精品69xx | 欧美1区3d| 国产女同性恋一区二区| 亚洲精品按摩视频| 国产一区二区三区免费不卡| 成人综合久久网| 少妇又紧又色又爽又刺激视频| 青青视频一区二区| eeuss鲁片一区二区三区在线观看| 在线播放国产精品二区一二区四区| 国产精品久久久久久久午夜| 日本一极黄色片| 五月婷婷视频在线| 精品在线播放| 久久人人97超碰com| 亚洲精品国精品久久99热| 亚洲精蜜桃久在线| 国产精品久久国产精麻豆96堂| 欧美日韩视频免费观看| 国产精品996| 精品日韩在线观看| 国产伦精品一区二区三区照片91| 国产av一区二区三区传媒| www久久久com| 日韩一级免费| 日韩一区二区视频| 国产精品美女黄网| 美国一级片在线观看| 成人激情久久| 懂色av中文字幕一区二区三区| 日韩一区二区免费在线电影| 日韩av不卡在线播放| 国产精品久久免费观看| 亚洲精品乱码日韩| 国产成人免费网站| 久久亚洲精品视频| 日本福利视频一区| 无码人妻熟妇av又粗又大| 欧美一区二区三区激情视频| 中文一区二区完整视频在线观看| 日韩一级裸体免费视频| 亚洲精品天堂成人片av在线播放| 免费中文字幕在线观看| 亚洲欧洲av| 亚洲日穴在线视频| 97视频免费在线观看| chinese少妇国语对白| 国产精品一品二区三区的使用体验| 欧美a级在线| 777午夜精品免费视频| 亚洲一区二区四区| 国产主播在线观看| av在线不卡顿| 夜夜嗨av一区二区三区四季av| 3344国产精品免费看| 69久久久久久| 色婷婷视频在线| 蜜臀a∨国产成人精品| 欧美成人性福生活免费看| 久久亚洲综合网| 国产精品suv一区二区88| 成人婷婷网色偷偷亚洲男人的天堂| 日韩欧美综合在线视频| 91综合免费在线| 国产麻豆天美果冻无码视频| 国产精品一区二区三区av | 国产无码精品久久久| 1024日韩| 欧美蜜桃一区二区三区| 国模一区二区三区私拍视频| 日本一区二区三区四区五区| 亚久久调教视频| 精品国产乱码久久久久久老虎| 性欧美videosex高清少妇| 国产亚洲成人av| 欧美wwwww| 色欲综合视频天天天| 成人毛片网站| 麻豆一区在线观看| 91精品国产91久久久久久密臀| 福利一区福利二区微拍刺激| 97久久天天综合色天天综合色hd | 国产精品天干天干在线综合| 国产日韩欧美中文在线播放| 欧美日韩免费一区二区| 欧美美女一区| 欧美变态tickling挠脚心| 久草青青在线观看| 黄色成人一级片| 久久久久久综合| 97久久久免费福利网址| 波多野结衣家庭教师在线观看| 综合国产视频| 6080yy午夜一二三区久久| 3d动漫一区二区三区| av中文字幕观看| 久久99热狠狠色一区二区| 欧美日韩不卡合集视频| 极品人妻一区二区| 日韩精品成人在线观看| 一本到不卡精品视频在线观看| 欧美 另类 交| a级片免费观看| 久久久久久久久97黄色工厂| 91精品国产一区二区三区动漫 | 少妇高清精品毛片在线视频| 99久热在线精品视频观看| 欧美日韩中文字幕在线视频| 国产欧美123| 黄页免费欧美| 中文字幕一区二区三区蜜月 | 亚洲黄网站黄| 久久久999精品免费| 天堂一区在线观看| 日本亚洲欧洲无免费码在线| 精品福利视频导航| 欧美高清性xxxxhd| 91麻豆精品在线| 99久久精品国产一区| 欧美综合在线第二页| 精品人妻无码一区二区三区换脸| 久久99国产精品视频| 欧美电影精品一区二区| 国产精品久久久久久久av福利| 日韩精品视频中文字幕| 欧美日韩专区在线| 欧美精品一区二区性色a+v| 国产福利第一页| 中文字幕亚洲一区二区av在线| 欧美一区二区综合| 亚洲va中文在线播放免费| 国产精品天美传媒| 青青草成人激情在线| 性xxxx视频播放免费| 国产精品网友自拍| 视频一区三区| 黄色精品视频| 一区二区三区在线播| 激情五月综合色婷婷一区二区| www亚洲视频| 93久久精品日日躁夜夜躁欧美| 粉嫩av四季av绯色av第一区| 少妇一级淫片免费放中国| 日韩av午夜在线观看| 久久综合网hezyo| 91香蕉视频在线播放| 99av国产精品欲麻豆| 久久人人爽人人爽人人片av高清| 久久久久久久久艹| 95精品视频在线| 日本欧美精品久久久| 成人四虎影院| 午夜视频一区二区| 777av视频| 妖精一区二区三区精品视频| 亚洲欧美国内爽妇网| 999热精品视频| 国产日韩欧美一区二区三区| 91精品国产色综合久久不卡蜜臀| 日日鲁鲁鲁夜夜爽爽狠狠视频97| japansex久久高清精品| 91精品国产综合久久精品性色| 日本77777| 亚洲精选91| 日本高清不卡的在线| 国产在线观看第一页| 亚洲欧美激情在线| 欧美人成在线观看| 性欧美video另类hd尤物| 日韩欧美在线一区二区| 青青草原在线免费观看| 国产91高潮流白浆在线麻豆| 懂色一区二区三区av片| 污污网站免费在线观看| 日本乱码高清不卡字幕| 日本一区二区三区视频在线播放 | 日本中文字幕在线视频观看 | 国产精品video| 日本成人午夜影院| 亚洲茄子视频| 国产精品精品视频| www精品国产| 色综合久久久久久久| 99九九99九九九99九他书对| 在线播放精品| 欧美激情视频网址| 亚洲欧洲综合网| 国产成人亚洲综合色影视| 蜜桃91精品入口| 国产成人久久精品一区二区三区| 精品免费99久久| 91导航在线观看| 91免费版在线看| 九九九九久久久久| 国产精品高潮久久| 欧美精品一区二区三区蜜桃| 国产成人无码精品久久二区三| 国产自产视频一区二区三区| 国产在线观看不卡| 在线观看xxx| 日韩一级高清毛片| 在线观看国产精品一区| 处破女av一区二区| 国产日韩一区欧美| va天堂va亚洲va影视| 国产偷国产偷亚洲清高网站| 性囗交免费视频观看| 尹人成人综合网| 国产精品自拍小视频| 一本色道久久综合亚洲| 亚洲视频网在线直播| 国产a视频免费观看| 亚洲特色特黄| 欧美孕妇孕交黑巨大网站| а√天堂资源在线| 91精品视频网| 国产传媒视频在线| 欧美经典一区二区三区| 欧美日韩在线中文| 亚洲一区二区三区四区五区午夜| 日韩av成人在线观看| 日韩欧美国产另类| 中文字幕一区在线观看| 看欧美ab黄色大片视频免费| 国产韩国精品一区二区三区| 色综合久久悠悠| 国产又黄又大又粗的视频| 在线观看亚洲专区| 99热这里只有精品2| 久久99热狠狠色一区二区| 日韩高清在线播放| 欧美人与拘性视交免费看| 欧美一区三区三区高中清蜜桃| 色婷婷在线视频| 精品成人一区二区三区| 久久精品视频日本| 午夜电影一区二区三区| 国产伦精品一区三区精东| 成人视屏免费看| 日本a在线天堂| 欧美午夜电影在线观看| 日韩美女中文字幕| 欧美三级网址| 亚洲一二三在线| 免费黄色一级大片| 欧美精品久久久久久久久老牛影院| 亚洲午夜久久久久久久国产| 中文字幕不卡在线| 日韩av片专区| 国产成人免费在线观看不卡| 97中文字幕在线| 第一会所亚洲原创| 国产精品亚洲欧美导航| 亚洲欧美久久精品| 欧美精品中文字幕一区| 青青国产在线视频| 欧美日韩亚洲综合在线| 亚洲精品卡一卡二| 亚洲成人tv网| 污污视频在线免费| 成人午夜视频在线观看| 大陆极品少妇内射aaaaa| 天天做综合网| 99国产超薄丝袜足j在线观看 | 亚洲综合一二三| 欧洲在线/亚洲| 中文字幕电影av| 亚洲va欧美va人人爽午夜| brazzers精品成人一区| 国产.欧美.日韩| 久久久999视频| 麻豆中文一区二区| 日韩电影大全在线观看| 国产精品久久久久无码av| 3d动漫啪啪精品一区二区免费| 露出调教综合另类| 欧美精品videofree1080p| 一级全黄裸体免费视频| 欧美在线一区二区| 国产黄在线免费观看| 国产精品久久久久一区二区三区 | 日韩久久中文字幕| 欧美日韩国产影片| 公肉吊粗大爽色翁浪妇视频| 亚洲欧美日韩小说| 精品黑人一区二区三区观看时间| 中文字幕一区二区三区在线播放 | 三上悠亚激情av一区二区三区| 神马久久久久久| 天天操天天射天天舔| 久久九九国产精品怡红院 | 自拍偷拍亚洲在线| 中文字幕一区二区三区四区欧美| 欧美日本一道本在线视频| 免费在线不卡视频| 3d成人动漫网站| www.com国产| 欧美成人video| 91成人在线免费| 国产一区二区三区在线观看网站 | 欧美成人剧情片在线观看| 中文字幕日本一区二区| 久久人人爽人人爽人人片av高请 | 亚洲女同一区二区| jizz中文字幕| 欧美视频在线看| 免费中文字幕在线观看| 欧美日本在线看| 中文在线观看av| 欧美猛男男办公室激情| 亚洲天堂av片| 亚洲精品国产综合区久久久久久久| 99在线精品视频免费观看20| 中文字幕亚洲一区| 国产a亚洲精品| 国产99久久精品一区二区| 欧美电影完整版在线观看| av在线亚洲男人的天堂| 这里只有精品在线| 99在线影院| 欧美 日韩 国产一区二区在线视频 | 精品久久久久久一区| 国产一区久久| 久久男人资源站| 福利一区在线观看| 精品国产一二区| 一区av在线播放| 久久久久亚洲AV| 日韩精品中文字幕在线一区| 国产精品亚洲欧美在线播放| 精品国产一区二区在线| 欧美视频在线视频精品| 国产精品入口夜色视频大尺度| 精品国产中文字幕第一页| 日韩欧美视频第二区| 日韩国产成人精品| 精品国产无码在线| 久久国产成人午夜av影院| wwwwwxxxx日本| 亚洲欧洲成人精品av97| 国产 xxxx| 福利精品视频在线| 波多野结衣视频网站| 亚洲女人天堂网| 第四色男人最爱上成人网| 国产精品国产亚洲伊人久久| 国产影视精品一区二区三区| 日韩欧美亚洲日产国| 久久精品国产在热久久| 一区二区三区国产好的精华液| 亚洲美女视频在线观看| 好吊色视频在线观看| 亚洲成人在线网| 国产精品国产一区二区三区四区| 日韩一级黄色av| 亚洲乱码一区| 国产欧美精品在线| 中文字幕av亚洲精品一部二部| 老子影院午夜伦不卡大全| 成av人片一区二区| 久久综合在线观看| 亚洲国产精品久久不卡毛片 | 国产精品观看| 欧美 日韩 国产 高清| 久久久午夜精品| 亚洲av无一区二区三区| 欧美成人女星排名| 一区二区久久久久| 两性午夜免费视频| 夜夜揉揉日日人人青青一国产精品| 久久久久久久久精| 亚洲欧洲激情在线| 中文无码av一区二区三区| 色系列之999| 久久人人爽人人爽人人片av不| 欧美精品一区二区三区在线四季| 美腿丝袜在线亚洲一区| 先锋资源在线视频| 国产精品久久久久久久久久久免费看| 污污的视频在线免费观看| 亚洲国产成人久久综合一区| 欧美极品在线| 精品视频高清无人区区二区三区|